Journal of Organometallic Chemistry, 114 (1976) C27–C29 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

PREPARATION AND PROPERTIES OF DINITROGEN—MOLYBDENUM COMPLEXES

IV^{*}. trans-Mo(CO)(N₂)(Ph₂ PCH₂ CH₂ PPh₂)₂ AND RELATED COMPLEXES

T. TATSUMI^{**}, H. TOMINAGA,

Engineering Research Institute, The University of Tokyo, Hongo, Tokyo (Japan) M. HIDAI^{**} and Y. UCHIDA

Department of Industrial Chemistry, The University of Tokyo, Hongo, Tokyo (Japan) (Received March 31st, 1976)

Summary

The reaction of trans-Mo(N₂)₂ (DPE)₂ [DPE = 1,2-bis(diphenylphosphino)ethane] with dimethylformamide (DMF) gives the carbonyl complex, Mo(CO)(DMF)(DPE)₂, which reacts readily with nitrogen gas forming the dinitrogen complex, trans-Mo(CO)(N₂)(DPE)₂; the dinitrogen ligand is so labile as to be displaced to afford the complexes, [Mo(CO)(DPE)₂]_n and Mo(CO)L(DPE)₂ (L = donor compounds).

In the course of investigating the reactions of the molybdenumdinitrogen complexes [1-3], we have found that trans-Mo(N₂)₂ (DPE)₂ reacts with DMF in benzene at reflux to yield Mo(CO)(DMF)(DPE)₂. The only other reported example of carbon monoxide abstraction from amides was found in a rhodium complex [4]. The complex, Mo(CO)(DMF)(DPE)₂, is an air-stable, dark-red crystalline solid, the IR spectrum of which (KBr) shows intense bands at 1690 cm⁻¹ [ν (C=O)] and 1630 cm⁻¹ [ν (C=O)]. It can be recrystallized from benzene under an argon atmosphere, but is completely converted to trans-Mo(CO)(N₂)(DPE)₂ on recrystallization under nitrogen. Dinitrogen complexes of rhenium having strongly π -bonding carbon monoxide groups as co-ligands have been reported [5,6].

The reaction of trans- $Mo(N_2)_2$ (DPE)₂ with carbon monoxide has been reported to give trans- $Mo(CO)_2$ (DPE)₂, which isomerizes to the *cis* isomer [1,

^{*}For parts I, II and III, see refs. 1, 2 and 3.

^{**} To whom correspondences should be addressed.

7,8]. However, there appears to be no indication of the intermediate formation of the mixed species $Mo(CO)(N_2)(DPE)_2$. The complex *trans*- $Mo(CO)_ (N_2)(DPE)_2$ reacts rapidly with carbon monoxide to give *trans*- $Mo(CO)_2^ (DPE)_2$, which is slowly converted to the *cis* isomer. Interestingly, when the benzene solution of *trans*- $Mo(CO)(N_2)(DPE)_2$ is allowed to stand for a long time under nitrogen, *cis*- $Mo(CO)_2(DPE)_2$ is formed, which is considered to be a disproportionation product.

The IR spectrum of trans-Mo(CO)(N_2)(DPE)₂ shows medium strong bands at 2110 and 2080 cm⁻¹ and strong bands at 1812 and 1791 cm⁻¹. The ¹⁵Nlabeled derivative shows bands at 2036, 2009, 1812 and 1789 cm⁻¹. Therefore, the two higher frequency vibrations are assigned to $\nu(N\equiv N)$ and the lower ones to $\nu(C\equiv O)$. The splittings of $\nu(N\equiv N)$ and $\nu(C\equiv O)$ seem to be due to a crystal effect, since such splitting was not observed in solution. The ³¹P NMR spectrum of trans-Mo(CO)(N_2)(DPE)₂ shows a sharp singlet at — 69 ppm (relative to 85% H₃ PO₄) for the four equivalent phosphorus nuclei, indicating a trans configuration similar to the bis-dinitrogen complex, Mo(N_2)₂ (DPE)₂.

As reflected in the high frequencies of $\nu(N\equiv N)$, the dinitrogen ligand of trans-Mo(CO)(N₂)(DPE)₂ is very labile in solution. When nitrogen is removed in vacuo or with a stream of argon, the original orange solution (benzene) changes rapidly to dark brown. From the resulting solution black crystals analyzing as $[Mo(CO_1(DPE)_2]_n$ can be obtained. The IR spectrum of $[Mo(CO)(DPE)_2]_n$ shows a band at 1807 cm⁻¹ ascribable to $\nu(C\equiv O)$. If n = 1, this complex is formally a coordinatively unsaturated 16-electron species, but its structure remains uncertain. Dissolved in benzene under nitrogen, this complex can be reconverted to trans-Mo(CO)(N₂)(DPE)₂.

TABLE 1

L	$\nu(CO) (cm^{-1})$	Other bands	
N≡N	1812, 1791	v(N≡N) 2080, 2110	
C ₂ H ₄	1813		
4-CIC, H, CN	1762	ν(C=N) 2162	
PhCN	1766	ν(C=N) 2175	
Pyridine	1724	· · · · ·	
N-MeIm b	1705		
DMF	1690	ν(C=O) 1630	

IR SPECTRA OF Mo(CO)L(DPE)2 COMPLEXES

^a KBr disk; in cm⁻¹. ^b N-Methylimidazole.

We have studied also the reaction of trans-Mo(CO)(N₂)(DPE)₂ with several substrates. The dinitrogen ligand is easily displaced by these substrates, yielding the complexes of the type Mo(CO)L(DPE)₂ (Table 1). These complexes also can be prepared from [Mo(CO)(DPE)₂]_n. The ν (C=O) of the complexes of DMF and N-methylimidazole is unusually low, which may be due to the strong π -donor properties of these ligands [9,10].

C28

References .

- 1 M. Hidai, K. Tominari and Y. Uchida, J. Amer. Chem. Soc., 94 (1972) 110.
- T. Tatsumi, M. Hidai and Y. Uchida, Inorg. Chem., 14 (1975) 2530.
 M. Hidai, T. Kodama, M. Sato, M. Harakawa and Y. Uchida, submitted.
- 4 A. Rusina and A.A. Vlček, Nature, 206 (1965) 295.
- 5 J.T. Moelwyn-Hughes and A.W.B. Garner, Chem. Commun., (1969) 1309.
- 6 J. Chatt, J.R. Dilworth and G.J. Leigh, J. Organometal. Chem., 21 (1970) P49.
 - 7 L.K. Holden, A.H. Mawby, D.C. Smith and R. Whyman, J. Organometal. Chem., 55 (1973) 343.
 - 8 T.A. George and C.D. Seibold, Inorg. Chem., 12 (1973) 2548.
 - 9 F.A. Cotton, Inorg. Chem., 3 (1964) 702.

10 W.J. Eilbeck, F. Holms, G.G. Philips and A.E. Vanderhill, J. Chem. Soc. A, (1967) 1161.